Thursday 21 August 2008

Cranial Electrotherapy Stimulator


Current generated flows through clips placed on the earlobes

Output current adjustable from 80 to 600 microamperes















Parts:

R1_____________1M5 1/4W Resistor

R2____________15K 1/4W Resistor

R3___________100K Linear Potentiometer

R4_____________2K2 1/4W Resistor

C1___________330nF 63V Polyester Capacitor

C2___________100µF 25V Electrolytic Capacitor

D1_____________3mm. Red LED

IC1___________7555 or TS555CN CMos Timer IC

IC2___________4017 Decade counter with 10 decoded outputs IC

SW1___________SPST Slider Switch

B1______________9V PP3 Battery

Clip for PP3 Battery

Two Earclips with wires (see notes)


Device purpose:

Owing to the recent launching in Europe of Cranial Electrotherapy Stimulation (CES) portable sets, we have been "Electronically Stimulated" in designing a similar circuit for the sake of Hobbyists. CES is the most popular technique for electrically boosting brain power, and has long been prescribed by doctors, mainly in the USA, for therapeutic reasons, including the treatment of anxiety, depression, insomnia, and chemical dependency. CES units generate an adjustable current (80 to 600 microAmperes) that flows through clips placed on the earlobes. The waveform of this device is a 400 milliseconds positive pulse followed by a negative one of the same duration, then a pause of 1.2 seconds. The main frequency is 0.5 Hz, i.e. a double pulse every 2 seconds. Some people report that this kind of minute specialized electrical impulses contributes to achieve a relaxed state that leaves the mind alert.
Obviously we can't claim or prove any therapeutic effectiveness for this device, but if you are interested in trying it, the circuit is so cheap and so simple to build that an attempt can be made with quite no harm.

Circuit operation:

IC1 forms a narrow pulse, 2.5Hz oscillator feeding IC2. This chip generates the various timings for the output pulses. Output is taken at pins 2 & 3 to easily obtain negative going pulses also. Current output is limited to 600µA by R2 and can be regulated from 80 to 600µA by means of R3. The LED flashes every 2 seconds signaling proper operation and can also be used for setting purposes. It can be omitted together with R4, greatly increasing battery life.

Notes:

  • In order to obtain a more precise frequency setting take R1=1M2 and add a 500K trimmer in series with it.
  • In this case use a frequency meter to read 2.5Hz at pin 3 of IC1, or an oscilloscope to read 400msec pulses at pins 2, 3 or 10, adjusting the added trimmer.
  • A simpler setting can be made adjusting the trimmer to count exactly a LED flash every 2 seconds.
  • Earclips can be made with little plastic clips and cementing the end of the wire in a position suited to make good contact with earlobes.
  • Ultra-simple earclips can be made using a thin copper foil with rounded corners 4 cm. long and 1.5 cm. wide, soldering the wire end in the center, and then folding the foil in two parts holding the earlobes.
  • To ensure a better current transfer, this kind of devices usually has felt pads moistened with a conducting solution interposed between clips and skin.
  • Commercial sets have frequently a built-in timer. Timing sessions last usually 20 minutes to 1 hour. For this purpose you can use the Timed Beeper the Bedside Lamp Timer or the Jogging Timer circuits available on this website, adjusting the timing components in order to suit your needs.

Monday 10 March 2008

Electronic Stethoscope


555 Timer as an A/D converter



555 Timer as an A/D converter

I had a Basic Stamp project that needed to measure a nominal 12 volt battery, and I wanted a simple solution. This is the simplest I could come up with. The 555 timer will put out positive pulses. The pulse width is inversely proportional to the difference in voltage between the voltage at "ANALOG IN" and the voltage of the 4.7uF capacitor(let's say 2.5 volts). To calibrate this circuit, hook it up to a Basic Stamp measuring positive pulses, and give the circuit a known voltage. Let's say you get the number 2092 when you give the circuit 15 volts. Your coefficient is 2092 * (15 - 2.5) = 26150. Now you are ready to measure voltage with your Basic Stamp. Use the formula: voltage = 26150/pulse + 2.5 . You will have to modify this to work within the limits of the Basic Stamp's math. The accuracy of this circuit rivals many digital voltmeters within the range I tested it (6 volts to 18 volts), about the same as a 10 bit A/D converter. The accuracy will shift with the processor clock and the +5 supply, so it is pretty good. Conversion time is under 1/10 second. Please note it will not measure voltages below 5 volts. Also, check the accuracy of your +5 volts. If it is 5.2 volts, you will need to use 2.6 in the formula. A sample program listing follows.

'uncomment the debug lines to get pulse value while calibrating
loop:
'debug cls
pulsin 0,1,w2 'I used pin 0
'debug w2
w1=26150 'This is the coefficient you will need to calibrate.
w4=w1/w2
w3=w4*100 'I am going to get around the integer-only Stamp math.
w4=w2*w4
w1=w1-w4*10 'remember the Stamp has left-to-right math
w4=w1/w2
w3=w4*10+w3
w4=w2*w4
w1=w1-w4*10
w4=w1/w2
w3=w4+w3
w3=w3+250 '250 is really 2.5 volts
debug w3,"volts * 100" 'we get a reading in hundredths of volts
goto loop

Power Supply Circuit

If you want circuit to use a higher current regulator - up to 5A regulators are available. Please see here circuit,it good idea very much.

In this circuit, the transistor Q1 is used to share some of the current supplied. The voltage regulator maintains the output voltage, and still operates short circuit protection. The current that the transistor takes is set by the resistor values R1 and R2, and is I = R2/R1 * RegulatorCurrent. The example shown converts a 1A regulator into a 5A (4A for the transistor plus 1A for the regulator) voltage regulator circuit. See the LM340 datasheet for a full description of this circuit.

Tuesday 19 February 2008